

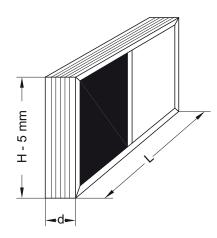
SB splitters, SKB sound attenuators

with glass fibre

Splitters and sound attenuators made of high-strength glass fibre and galvanized sheet steel for optimum sound attenuation in ventilation and air conditioning systems.

SB splitters for installation in ducts

SKB sound attenuator with SB splitters - Standard design -



SB splitters with glass fibre

Data sheet

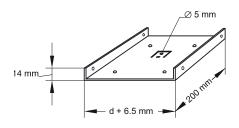
SB splitters with glass fibre are combined absorbing and resonating sound attenuating splitters of dual-chamber type for ventilation and air conditioning systems. With peripheral profile frame made of galvanized sheet steel and with continuous stabilising and chamber separating profile for relatively high loading capacity. The surfaces of the absorbent material made of rotproof, bio-soluble mineral wool are lined with tear-resistant, abrasion-resistant and moisture-repellent glass fibre (glass filament fabric) and galvanized sheet steel. The design ensures **attenuation of broadband noise** with an **optimum** in the critical frequency range of around **250 Hz** with the smallest possible installation length.

Туре	Thickness of splitters d [mm]	Gap width s [mm]	Nominal height H [mm]	Length L [mm]
SB100	100	50 to 200	- 150 to 1800	500 750 1000
SB200	200	50 to 400	150 to 1600	1250 1500

- Nominal heights H in 1-mm increments from 150 mm to 1800 mm.
- The lengths L are only supplied with the specified dimensions.
- All of the specified heights and lengths can be combined as standard.
- Greater heights H and lengths L can be achieved by combining several splitters.

The actual height of all splitters is always 5 mm less than the nominal height!

- Splitters with additional perforated metal covering on the surfaces coated with glass fibre are supplied as standard. The insertion losses remain unchanged.
- Splitters are to be installed in a suitable casing made of sheet metal or other mineral-based material, for example, in order to achieve the insertion losses specified in the catalogue with the specified gap widths.

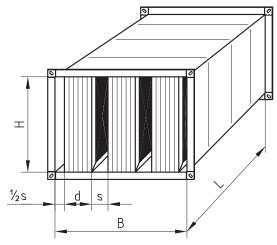

Characteristics and proof of conformity

- Insertion loss, flow noise and pressure loss according to DIN EN ISO 7235.
- Permissible operating temperature: 100°C
- Permissible air velocity in splitter gap: 20 m/s.
- Non-combustible (building material class A2 according to DIN 4102-1)
 AbP P 3578 / 1149 MPA BS; certificate of compliance ZERT 3 / 843 / 04 MPA BS.
- Proof of hygiene: VDI 6022-1; VDI 2067-1; VDI 3803; DIN 1946-4; DIN EN 13779 Ruhr District Institute of Hygiene, Gelsenkirchen.
- Proof of toxological conformity: Due to bio-solubility, does not contain carcenogenic, mutagenic or teratogenic substances. Safety data sheet according to Announcement on Hazardous Substances 220 of the mineral wool manufacturer.

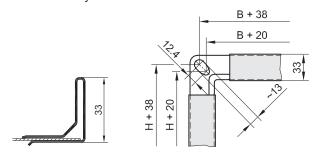
Accessories:

U-caps for on-site assembly of splitters

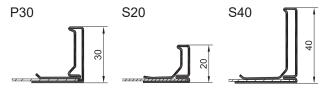
- Type U100 for 100-mm splitter thickness
- Type U200 for 200-mm splitter thickness



SKB sound attenuator with glass fibre


Data sheet

SKB sound attenuators with glass fibre are air duct casings made of galvanized sheet steel reinforced with beads and external longitudinal profiles with SB splitters inserted for ventilation and air conditioning systems.


Туре	Built-in split- ters	Gap widths s [mm]	Width B [mm]	Height H [mm]	Lengths L [mm]
SKB100	SB100	50 to 200	150 to 1600	150¹)	500 750
SKB200	SB200	50 to 400	250 to 2400	to 1800	1000 1250 1500

- Widths B are available in 1-mm increments from 150 mm to 1600 mm, or 250 mm to 2400 mm and with n = 1 to 8 pc splitters with the specified gap widths s. For transportation reasons, the maximum widths cannot be exceeded.
- Heights H in 1-mm increments from 150 mm to 1800 mm are available.
- The lengths L are only supplied with the specified dimensions. Lengths L = 1750 mm to L = 3000 mm are divided into two pieces at the factory.

Standard frame profile V10 with slotted holes at the frame corners for commercially available connection profiles.

Order options			Satisfies DIN EN 15727		
Casing	Underpressure	Overpressure	Pressure class	Leak tightness class	
Standard	-1000	+1000	2	А	
Option: 2		+2500	3	А	
Option: C	-1000	+1000	2	С	
Standard	-630	+1000		2	
Standard	-1000	+2500		3	
	Standard Option: C Standard	Standard Option: C -1000 Standard -630	SKB casing [Fa] Pan Pan	Standard	

Special frame profiles

NOMENCLATURE ⇒ see pages 4 to 8

B [mm] = Width

H [mm] = Height
L [mm] = Length

d [mm] = Thickness of splitters

n = Number of splitters

s [mm] = Splitter gap

= Pressure drop coefficient

 Δp [Pa] = Pressure drop

 A_{A} [m²] = Inflow cross-section;

 $A_{A}[m^{2}] = B[mm] / H[mm] / 10^{6}$

 A_{free} [m²] = free cross-section;

 A_{free} [m²] = n · s [mm] · H [mm] / 10⁶

 $V [m^3/h] = Volume flow$

 v_s [m/s] = Flow velocity in splitter gap;

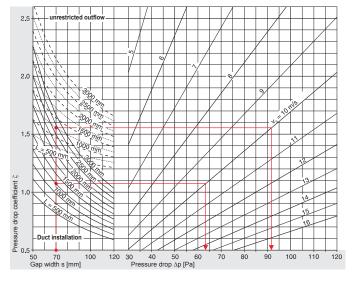
 $v_s [m/s] = V [m^3/h] / 3600 / A_{free} [m^2]$

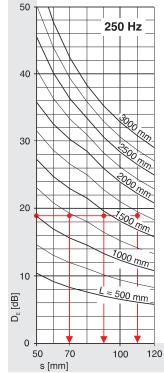
 v_{A} [m/s] = Flow velocity in inflow cross-section;

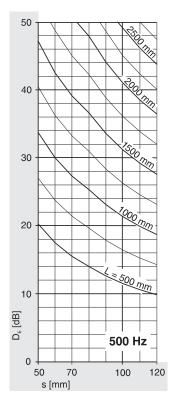
 v_{Δ} [m/s] = V [m³/h] / 3600 / A_{Δ} [m²]

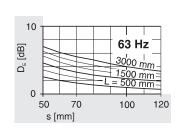
 D_{E} [dB] = Insertion loss

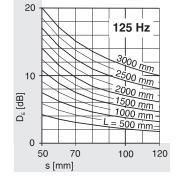
 L_{WA} [dB(A)] = A - sound power level of flow noise

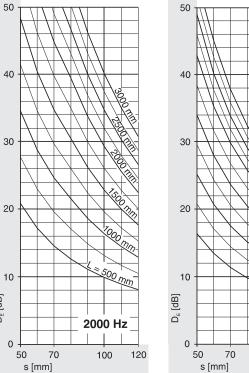

f [Hz] = Octave mid frequency

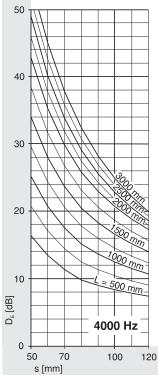

 L_{ii} [dB/Oct.] = Octave sound power level Flow noise

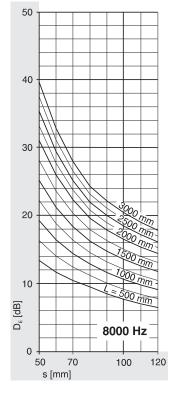

 ΔL [dB] = Relative sound power level

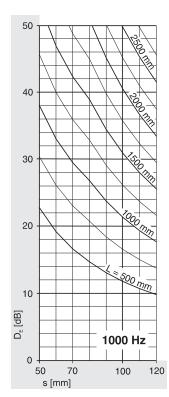

¹⁾ option 2 is available with height H from 153 mm!

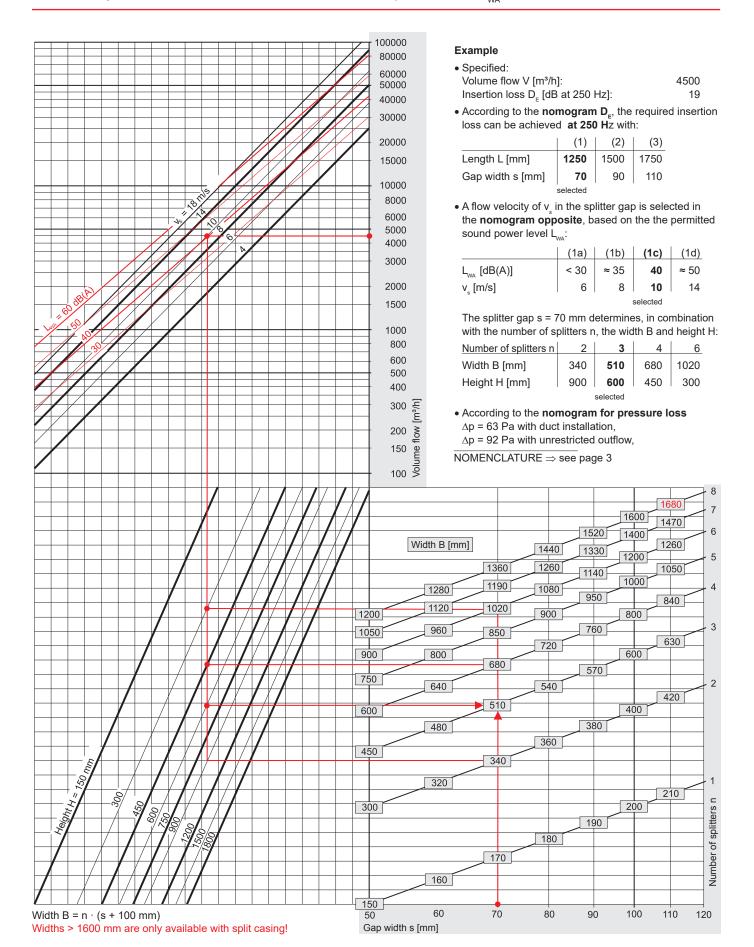

SB splitters with glass fibre, SKB sound attenuator 100-mm splitter thickness: Pressure loss Δp , insertion loss D_{ϵ}



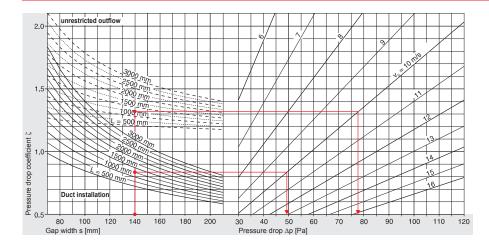


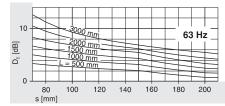


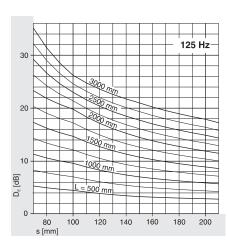


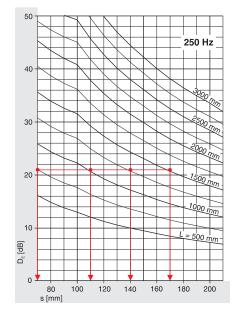


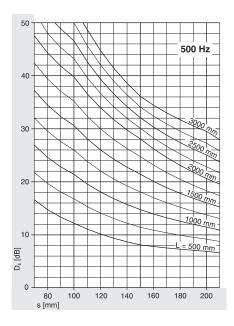
D_E [dB]

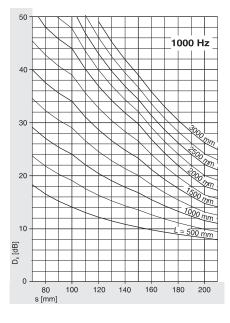

User Manual 6.2 (2016-09) 4 Subject to change

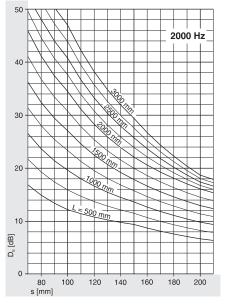


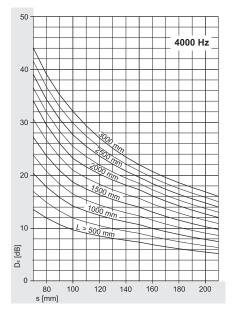

100-mm splitter thickness: Volume flow V, sound power level L_{wa}

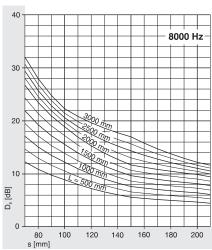


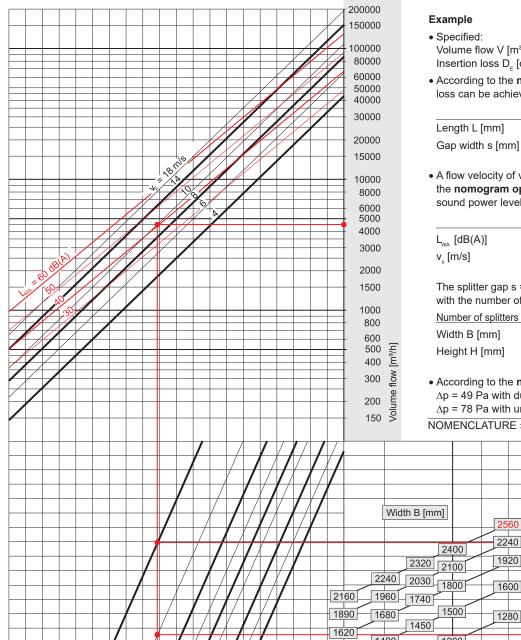

200-mm splitter thickness: Pressure loss Δp , insertion loss D_E











User Manual 6.2 (2016-09) 6 Subject to change

200-mm splitter thickness: Volume flow V, sound power level L_{wa}

• Specified:

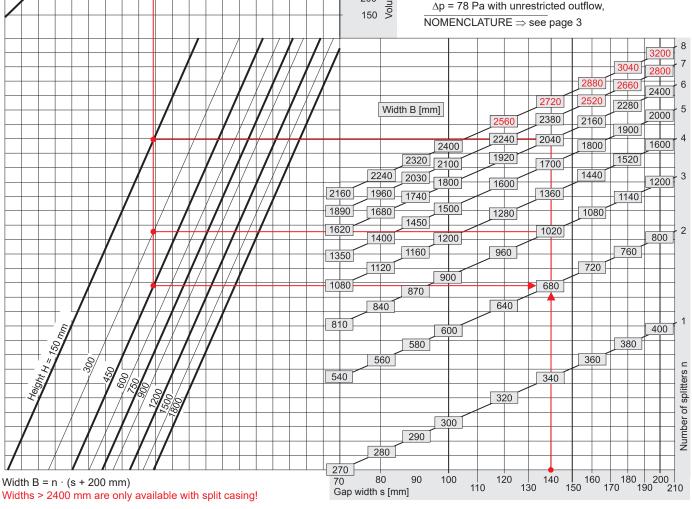
Volume flow V [m³/h]:

Insertion loss D_e [dB at 250 Hz]:

21

 According to the nomogram D_e, the required insertion loss can be achieved at 250 Hz with:

	(1)	(2)	(3)	(4)
Length L [mm]	750	1000	1250	1500
Gap width s [mm]	70	110	140	170
			colocted	


• A flow velocity of v_s in the splitter gap is selected in the **nomogram opposite**, based on the the permitted sound power level L_{wa} :

	(3a)	(3b)	(3c)	(3d)
L _{wa} [dB(A)]	< 30	□ 35	40	□ 50
v _s [m/s]	6	8	10	14
			calacted	

The splitter gap s = 140 mm determines, in combination with the number of splitters n, the width B and height H:

Number of splitters n	2	3	6
Width B [mm]	680	1020	2040
Height H [mm]	450	300	150
	colocted		

According to the nomogram for pressure loss
 Δp = 49 Pa with duct installation,
 Δp = 78 Pa with unrestricted outflow,

Flow noise

Sound attenuators should be supplied with an airflow velocity that is evenly distributed across the duct cross-section. The stated pressure losses and sound power levels for flow noise apply subject to the following. Whenever possible, air entering sound attenuators downstream of bends, branches, fans, etc. should first pass through guide sections in order to compensate for anticipated variations in air velocity.

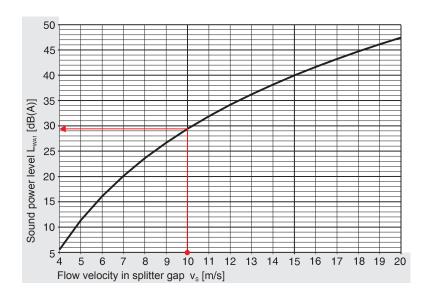
The maximum permissible air velocity in the gap s is 20 m/s. Due to the associated relatively high pressure losses and flow noise, the applicable flow velocities are generally lower in practice.

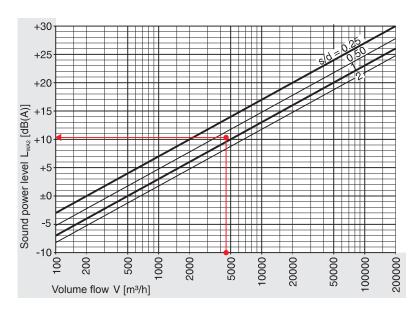
The sound power level L_{WA} of the flow noise depends on the flow velocity and volume flow:

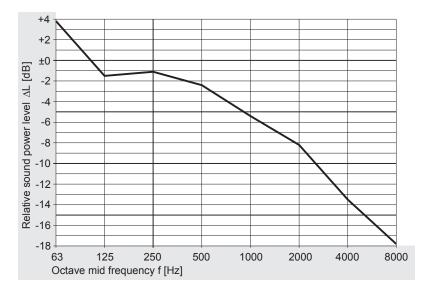
$$L_{WA}[dB(A)] = L_{WA1}[dB(A)] + L_{WA2}[dB(A)]$$

This sound power level $L_{\scriptscriptstyle WA}$ should be at least 10 dB less than the sound power level of the plant noise downstream of the sound attenuator, as otherwise the flow noise of the sound attenuator could prevail.

$$L_{W-Oct}$$
 [dB] = L_{WA} [dB(A)] + ΔL [dB]

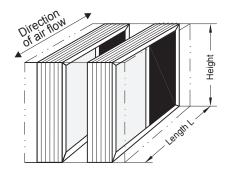

Example:

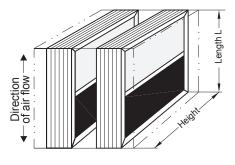

Flow velocity in gap s [m	=	10	
Volume flow V [m³/h]		= 4	4500
Gap width s [mm]		=	140
Splitter thickness d [mm]	=	200	
relative gap width	s/d = 140 / 200	=	0.7
L_{WA} [dB(A)]	≈ 29 + 11	=	40


f	[Hz]	63	125	250	500 1	000 2	2000 4	1000 8	3000
L_{w_A}	[dB(A)] [dB]	40	40	40	40	40	40	40	40
+∆L	[dB]	+4	-2	-1	-2	-5	-8	-14	-18
$\boldsymbol{L}_{\text{W-Oct}}$	[dB]	44	38	39	38	35	32	26	22

According to this example, the sound power level of the plant noise downstream of the sound attenuator should not be much less than 50 dB(A). Select a smaller flow velocity in the gap s if necessary.

This approach is recommended as the relative levels used as the basis for level addition may be subject to significant tolerances, depending on the system used. The stated correction values ΔL are average values.

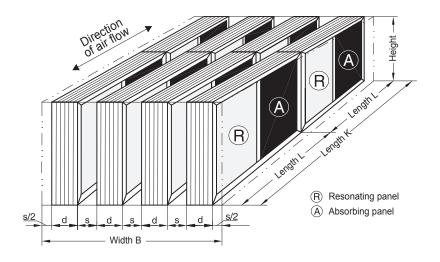



Installation

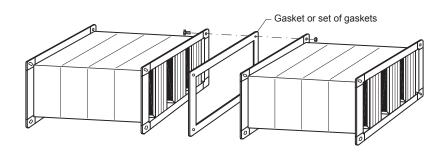
Installation positions

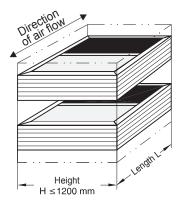
SB splitters are installed vertically.

Splitters can only be installed horizontally up to a a maximum height of 1200 mm if moisture penetration is fundamentally ruled out.



A central support should also be provided for heights above 600 mm!


Installation arrangement

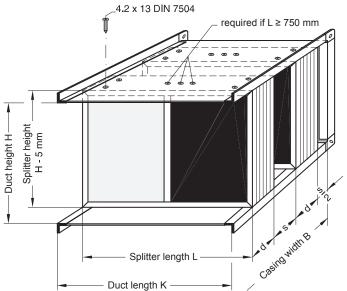

SB splitters must be arranged in parallel so the absorbing panels (A) are always opposite resonating panels (R) and also follow them:

Duct sizes

- SKB sound attenuators can be delivered as single units with a length of up to 1500 mm. Longer lengths of up to 3000 mm are divided and delivered in at least two parts for assembly on site.
- SKB sound attenuators higher than 1000 mm and longer than 750 mm are supplied with external lateral stiffening profiles with a height of roughly 32 mm.

Please note:

- The duct length K must be at least equal to the sum of splitter lengths L.
- Only splitters with equal lengths L may be arranged side by side or above one another.
- The splitter height H and splitter length L must not be swapped round.
- The airflow must pass through the gap s in the longitudinal direction of the splitter L.
- The widths of the gaps s between the two outer splitters and the duct is to be halved, i.e. set up with s/2.
- The gap widths must remain constant over length L and height H.
- Increasing the width of the gap leads to a reduction in attenuation.
- Reducing the width of the gap leads to an increase in pressure loss and flow noise.
- The actual dimension of the splitter height is 5 mm less than the nominal height H of the splitters to allow for duct wall thicknesses.
 If several splitters are installed on site in a stacked arrangement, it may be necessary to order higher splitters.
- The nominal height H of the splitters is always the ordering dimension.

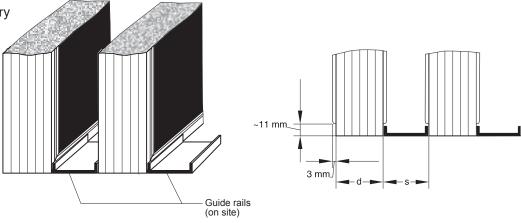

SB splitters with glass fibre

Installation in on-site air ducts (1)

 SB splitters can be inserted into a duct with a Duct wall clear height which is equal to the nominal Sound attenuating filling height. Only air ducts whose walls are as smooth and plane-parallel as possible made of steel, Guide rail aluminium, concrete or masonry (on site) Splitter frame should be used. • If a stacked arrangement of several SB splitters is required, an additional height of 5 mm for each 25 mm splitter should be ordered to ensure the clearance between the splitter and duct does not increase by any further than is necessary. Otherwise, fill the remaining spaces between the splitter and duct correctly with sound-at-Splitter Clear span

 SB splitters can be inserted with drilling screws in metal ducts.

tenuating fillings.

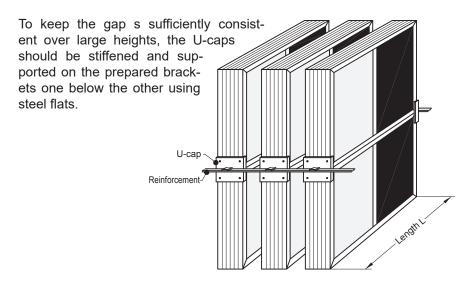

Please note:

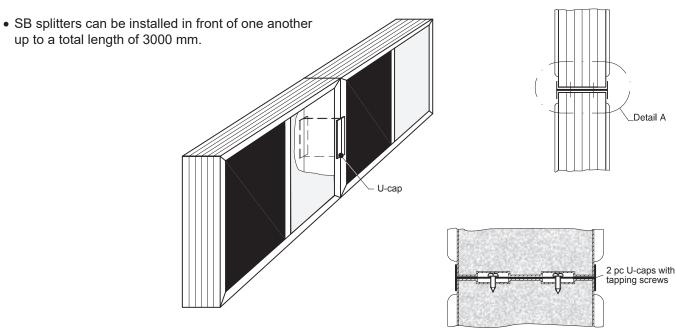
frame

 \approx d + 7 mm

- The splitters must be securely seated and not exposed to vibrations.
- Seal screws if required.

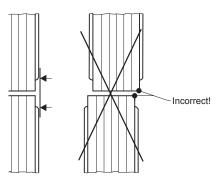
 They can be installed in concrete and masonry ducts with guide rails.





SB splitters with glass fibre

Installation in on-site air ducts (2)

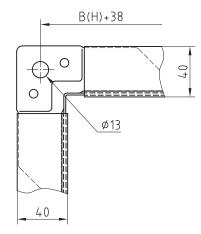

• SB splitters can be stacked to an overall height of roughly 5390 mm. They should be connected with U-caps.

It must be ensured that the splitters are carefully aligned! Avoid offsetting of the splitters.

If required, two U-caps placed on top of one another should be installed.

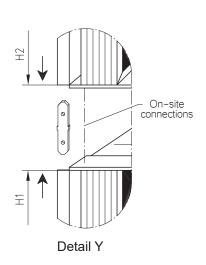
Detail A

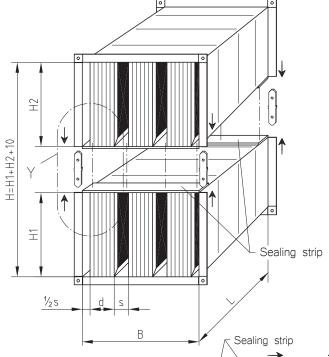
SKB sound attenuator

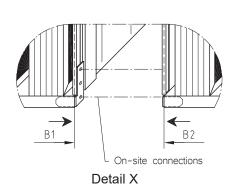

Assemblable casing

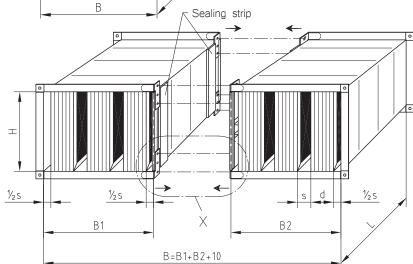
SKB sound attenuator with casings which can be assembled on site.

Outer frame profile S40, joint profiles made of steel flats. The screws required for assembly (M8x20) are to be provided on site.

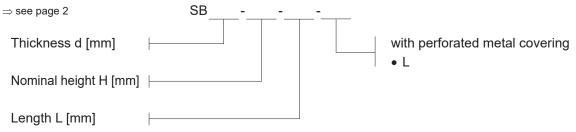

Two individual sound attenuators are to be ordered; in doing so the following must be observed:

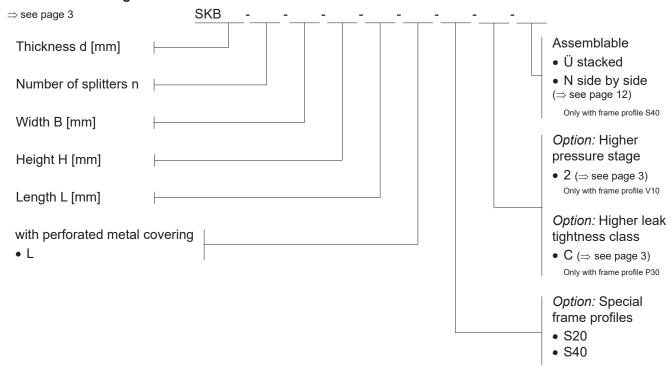

- The same lengths L are required for both casings
- The same splitter thicknesses d should be used in both casings; likewise the gap widths s should always be the same
- · Stacked assembly
 - The same widths B are required for both casings
 - The total height H is always 10 mm more than the sum of both individual heights H, + H,
- · Side-by-side assembly
 - The same heights H are required for both casings
 - The total width B is always 10 mm more than the sum of both individual widths B₁ + B₂


Frame profile S40


Stacked assembly

Side-by-side assembly




SB splitters, SKB sound attenuators

Order data

Splitters with glass fibre

Sound attenuator with glass fibre

Accessories:

SB splitters

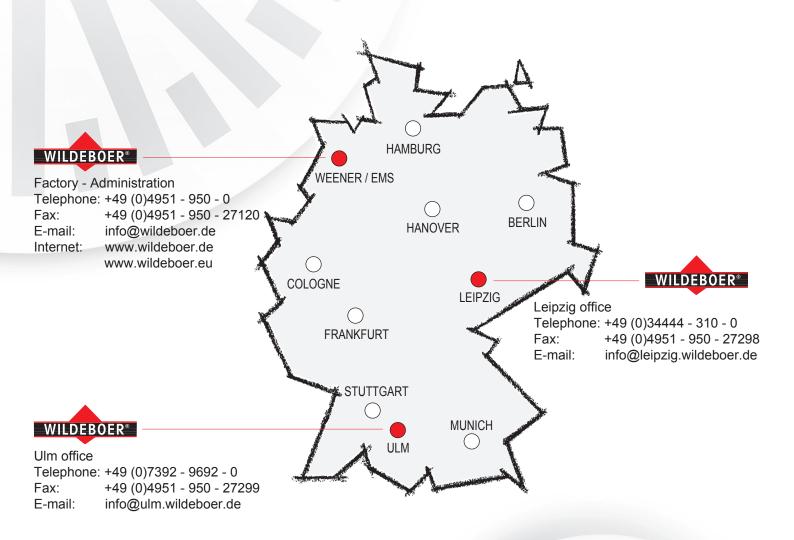
Specification text

SB splitters with bio-soluble mineral wool and high-strength, abrasion-resistant and moisture-repellent surface made of glass fibre. Non-combustible according to DIN 4102. Dual-chamber type made of galvanized sheet steel, with absorbing and resonating elements for optimum sound attenuation at 250 Hz, peripheral profile frame, and stabilising and chamber-separating profile.

chamber-separating pr	rofile.	
 pc splitter set each	containin	g pc splitters
Thickness of splitters	:	mm
Casing width:		mm
Heights of splitters:	:	+ mm
Lengths of splitters:	:	+ mm
Gap width:		mm
Insertion loss:		dB at 250 Hz
Volume flow:		m³/h
Pressure drop:		Pa
Flow noise:		dB(A)
Manufacturer:	WILDEBOER	8
Type:	SB with g	lass fibre
	and addit	ional perforated metal covering
	-	rding to state building regula- ority test certificate.
Hygiene - verification VDI 3803, DIN 1946 -		ng to VDI 6022-1, VDI 2067-1, 13779
Supply complete wit install in an on-site	_	s and other accessories and ade of
		deliver:
		install:

Select texts not highlighted in bold as required!

SKB sound attenuator


Specification text

SKB sound attenuators with built-in SB splitters with bio-soluble mineral wool and high-strength, abrasion-resistant, moisture-repellent surface made of glass fibre. Non-combustible according to DIN 4102. Dual-chamber type made of galvanized sheet steel, with resonating and absorbing elements for optimum sound attenuation at 250 Hz, peripheral profile frame, and stabilising and chamber separating profile. Duct casing made of galvanized sheet steel, with connection frame and stiffening profiles.

nection frame and sti	rrrening b	rollies.
 Pc		
Thickness of splitters	:	mm
Number of splitters:		Pc
Casing width:		mm
Casing heights:		+ mm
Casing lengths:		+ mm
Gap width:		mm
Insertion loss:		dB at 250 Hz
Volume flow:		m³/h
Pressure drop:		Pa
Flow noise:		dB(A)
Leak tightness class	:	
Operating pressure:		
Manufacturer:	WILDEBOER	₹ ®
Type:	SKB with	glass fibre
	and addit	cional perforated metal covering
	_	ording to state building regula- cority test certificate.
Hygiene - verification VDI 3803, DIN 1946 -		ng to VDI 6022-1, VDI 2067-1, 13779
Complete with fixing	s, counter	frame and other accessories
		deliver:
		install:

Select texts not highlighted in bold as required!

INNOVATIVE · PRACTICAL · ECONOMICAL

TAKE ADVANTAGE OF OUR STRENGTHS

Air distribution Fire protection Noise protection